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DERIVED DECOMPOSITIONS OF ABELIAN CATEGORIES I

HONGXING CHEN AND CHANGCHANG XI

Derived decompositions of abelian categories are introduced in internal
terms of abelian subcategories. They are used to construct semiorthog-
onal decompositions (or in other terminology, Bousfield localizations, or
hereditary torsion pairs) in derived categories of abelian categories. A
sufficient condition is given for abelian categories to have derived decompo-
sitions. This is necessary if abelian categories have enough projectives and
injectives. Applications are given to homological ring epimorphisms, local-
izing subcategories, nonsingular rings and commutative noetherian rings.
Moreover, a derived stratification of module categories over commutative
noetherian rings of Krull dimension at most 1 is presented.

1. Introduction

Semiorthogonal decompositions (or hereditary torsion pairs in the terminology
of [Beligiannis and Reiten 2007]) have been applied in a number of branches of
mathematics. For example, in homotopy and triangulated categories, they were
also named as Bousfield localizations [Neeman 2001, §9.1] and applied to get
t-structures of triangulated categories (see [Beı̆linson et al. 1982]), and in algebraic
geometry they were used to study Fourier–Mukai transforms on derived categories of
coherent sheaves of smooth projective varieties (see [Huybrechts 2006, Chapter 11;
Bondal and Orlov 1995]). In the course of studying semiorthogonal decompositions
(see Definition 2.1), the following fundamental question seems to remain:

Question. Given an abelian category A, how can we construct semiorthogonal
decompositions of the ∗-bounded derived category D∗(A) of A for ∗∈{b,+,−,∅}?

To answer this question, we characterize semiorthogonal decompositions of an
abelian category directly in terms of abelian subcategories.

Definition 1.1. Let A be an abelian category, and let X and Y be full subcategories
of A. For ∗ ∈ {b,+,−,∅}, D∗(A) denotes the ∗-bounded derived category of A.
The pair (X ,Y) is called a D∗-decomposition of A if
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(D1) both X and Y are abelian subcategories of A, and the inclusions X ⊆A and
Y ⊆A induce fully faithful functors D∗(X )→ D∗(A) and D∗(Y)→ D∗(A),
respectively.

(D2) HomD∗(A)(X, Y [n])= 0 for all X ∈ X , Y ∈ Y and n ∈ Z.

(D3) For each object M•∈D∗(A), there is a triangle X M•→M•→Y M•
→ X M•[1]

in D∗(A) such that X M• ∈ D∗(X ) and Y M•
∈ D∗(Y).

Since the existence of Db-decompositions is the weakest condition among those
other type of derived decompositions introduced in Definition 1.1, we sometimes
pay more attention to the existence of such decompositions. For convenience, a
Db-decomposition of A is termed derived decomposition of A.

We present sufficient and necessary conditions of when D∗-decompositions
(and thus also semiorthogonal decompositions) of abelian categories exist. This
is given in entirely internal terms of the abelian categories. We then apply our
characterization to construct D∗-decompositions for a wide variety of situations,
including homological ring epimorphisms, localizing subcategories and commuta-
tive noetherian rings. Also, we show that the module category over a commutative
noetherian ring of Krull dimension at most 1 has a derived stratification. But for
an indecomposable commutative ring its derived category does not have nontrivial
stratification by derived categories of rings (see [Angeleri Hügel et al. 2017]).
Compared with this phenomenon, derived decompositions of abelian categories
provide a new way to approach the derived category of an abelian category by those
of its smaller abelian subcategories.

Our main result reads as follows.

Theorem 1.2. Let A be an abelian category, X and Y full subcategories of A and
∗ ∈ {b,+,−,∅}.

(1) The pair (X ,Y) is a D∗-decomposition of A if the following conditions hold:
(a) ExtnA(X, Y )= 0 for any n ≥ 0, X ∈ X and Y ∈ Y .
(b) For each object M ∈A, there is a long exact sequence 0→ YM→ X M→

M→ Y M
→ X M

→ 0 in A with X M , X M
∈ X and YM , Y M

∈ Y .
(c) For each object M ∈A, there is a monomorphism M→ I in A such that

X I
= 0 in (b).

(d) For each object M ∈A, there is an epimorphism P→ M in A such that
YP = 0 in (b).

(2) Suppose that A has enough projectives and injectives. Then (X ,Y) is a D∗-
decomposition of A if and only if (a) and (b) together with (c′) and (d ′) hold,
where

(c′) if M is injective, then X M
= 0 in (b);

(d′) if M is projective, then YM = 0 in (b).
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Note that (a) and (b) in Theorem 1.2 together are equivalent to saying that the
pair (X ,Y) is a complete Ext-orthogonal pair in A, see (GC) and Lemma 2.3. Such
pair was first introduced by Krause and Št’ovíček [2010] to study the telescope
conjecture for hereditary rings.

Theorem 1.2(2) implies that if A has enough projectives and injectives, then the
existences of D∗-decompositions of A for all ∗ ∈ {b,+,−,∅} are equivalent. In
particular, we have the following consequence.

Corollary 1.3. Let λ : R→ S be a homological ring epimorphism. Define Y :=
{Y ∈ R-Mod |HomR(S, Y )= 0= Ext1R(S, Y )} and Z := {X ∈ R-Mod | S⊗R X =
0= TorR

1 (S, X)}. Then

(1) (S-Mod,Y) is a derived decomposition of R-Mod if and only if projdim(R S)≤
1 and HomR(Coker(λ), Ker(λ))= 0.

(2) (Z, S-Mod) is a derived decomposition of R-Mod if and only if flatdim(SR)≤

1 and Coker(λ)⊗R I = 0 for any injective R-module I .

(3) If (1) and (2) are satisfied, then, for any ∗ ∈ {b,+,−,∅}, we have D∗(Y) '−→
D∗(Z) and there exists a recollement:

D∗(S) // D∗(R) //
gg

ww
D∗(Y)gg

ww
.

In Corollary 1.3(3), the derived equivalences hold for arbitrary homological ring
epimorphisms. They generalize the Matlis equivalences of derived categories of
abelian categories in [Positselski 2018, Theorem 7.6] for localizations of commu-
tative rings. Note that the derived equivalences of bounded derived categories in
Corollary 1.3(3) have recently been extended to the ones of derived categories of
other types in [Bazzoni and Positselski 2020]. Thus Corollary 1.3(3) coincides
with [Bazzoni and Positselski 2020]. Moreover, our method developed in this paper
is based on the technique of complete Ext-orthogonal pairs and can be applied to
general abelian categories. For a general construction of half recollements of derived
categories from derived decompositions, we refer the reader to Corollary 3.16.

Applying Theorem 1.2 to commutative rings, we have the following corollary.
For notation and notions, we refer the reader to Section 4.4.

Corollary 1.4. Let R be a commutative noetherian ring.

(1) Suppose that 8 is a specialization closed subset of Spec(R) and 8c
:=

Spec(R) \8. Then

(i) (Supp−1(8),Supp−1(8c)) is a derived decomposition of R-Mod if and
only if 8c is coherent, where Supp−1(8) is the category of those R-
modules M such that their supports are contained in 8.
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(ii) If the Krull dimension of R is at most 1, then (Supp−1(8),Supp−1(8c))

is a derived decomposition of R-Mod.

(2) Let6 be a multiplicative subset of R, S the localization of R at6 and8 :={p∈
Spec(R) | p∩6 6=∅}. Then (Supp−1(8), S-Mod) is a derived decomposition
of R-Mod.

Further application of Theorem 1.2 to localizing subcategories is given by
Proposition 4.6. For a commutative noetherian ring of Krull dimension at most 1,
we show that its module category always admits a derived stratification (see
Corollary 4.11). For a left nonsingular ring, we have the following result. Ex-
amples of left nonsingular rings include left semihereditary rings, direct products
of integral domains, semiprime left Goldie rings and commutative semiprime rings
(see [Goodearl 1976]).

Corollary 1.5. Let R be a ring, X be the full subcategory of singular modules
in R-Mod, and Y be the full subcategory of R-Mod consisting of all direct sum-
mands of arbitrary products of copies of the injective envelope of R R. If R is left
nonsingular, then (X ,Y) is a derived decomposition of R-Mod.

The article is outlined as follows: In Section 2 we fix notation and recall defini-
tions needed in proofs. In Section 3 we prove Theorem 1.2. The proof is divided into
two parts. The first one is for the proof of Theorem 1.2(1), while the second one is
for that of Theorem 1.2(2). In Section 4 we apply Theorem 1.2 to construct derived
decompositions of module categories from various aspects: ring epimorphisms,
localizing subcategories, nonsingular ring and commutative noetherian rings, and
therefore prove the three corollaries.

In the second paper we shall construct complete cotorsion pairs from derived
decompositions and then apply them to infinitely generated tilting modules, and
also establish inequalities of homological dimensions of abelian categories involved
in derived decompositions.

2. Notation and definitions

In this section we first fix some notation and recall definitions of semiorthogonal
decompositions (or hereditary torsion pairs), cotorsion pairs and complete Ext-
orthogonal pairs.

2.1. Notation for derived categories. Let A be an additive category.
A full subcategory B of A is always assumed to be closed under isomorphisms.

For an object X ∈A, add(X) (respectively, Add(X)) denotes the full subcategory
of A consisting of all direct summands of finite (respectively, arbitrary) coproducts
of copies of X (if arbitrary coproducts exist).
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Let F : A→ A′ be an additive functor from A to another additive category
A′. The kernel and image of F are defined as Ker(F) := {X ∈ A | F X ' 0} and
Im(F) := {Y ∈A′ | there exists X ∈A, F X ' Y }, respectively. Let f : X→ Y be
a morphism in A. The kernel, image and cokernel of f , whenever they exist, will
be denoted by Ker( f ), Im( f ) and Coker( f ), respectively.

By a complex X• over A we mean a sequence of morphisms d i between objects
X i in A:

· · · → X i d i
−→ X i+1 d i+1

−→ X i+2
→ · · · ,

such that d i d i+1
= 0 for all i ∈ Z. We write X• = (X i , d i )i∈Z and call d i the i-th

differential of X•. For a fixed n ∈ Z, we denote by X•[n] the complex obtained
from X• by shifting n degrees, that is, (X•[n])i = Xn+i with the i-th differential
(−1)ndn+i , and by H n(X•) the n-th cohomology of X•.

Let C(A) be the category of all complexes over A with chain maps as morphisms,
and K(A) the homotopy category of C(A). We denote by Cb(A) and Kb(A) the
bounded complex and homotopy categories of A, respectively.

From now on, let A be an abelian category.
By D(A) and Db(A) we denote the unbounded and bounded derived categories

of A, respectively. Throughout the paper, we always identify Db(A) with the
full subcategory of D(A) consisting of all complexes with finitely many nonzero
cohomologies because they are equivalent as triangulated categories. Further, by
D+(A) and D−(A) we denote the bounded-below and bounded-above derived
categories of A, respectively.

For X, Y ∈ A and i ∈ Z, we write ExtiA(X, Y ) for HomD(A)(X, Y [i]). Note
that Ext0A(X, Y ) = HomA(X, Y ) and ExtiA(X, Y ) = 0 whenever i < 0. For each
i ≥ 1, ExtiA(X, Y ) can be identified with the set of equivalence classes of long exact
sequences 0→ Y → Ei → · · · → E1→ X→ 0 in A (see [Iversen 1986, XI] for
details).

The following facts are standard in homological algebra.

(1) Suppose that A has enough projectives with P(A) the category of all projec-
tive objects of A. Further, let K−,b(P(A)) be the full subcategory of K(A)
consisting of bounded-above complexes with all terms in P(A) and finitely
many nonzero cohomologies. Then there is a triangle equivalence between
K−,b(P(A)) and Db(A). In this case, ExtiA(X, Y ) is isomorphic to the usual
i-th extension group of X and Y , defined by projective resolutions of X .

(2) Dually, suppose that A has enough injectives with I(A) the category of all injec-
tive objects of A. Then there is a triangle equivalence between K+,b(I(A)) and
Db(A), where K+,b(I(A)) is defined similarly. In this situation, ExtiA(X, Y )
can be calculated by taking injective resolutions of Y .
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A full subcategory B of A is called an abelian subcategory of A if B is an abelian
category and the inclusion B→A is an exact functor between abelian categories.
This is equivalent to saying that B is closed under taking kernels and cokernels in A.
The full subcategories {0} and A are called the trivial abelian subcategories of A.

Let N denote the set of nonnegative integers. For n ∈N and a full subcategory B
of A, we define the full subcategories of A:

⊥nB := {X ∈A | ExtnA(X, Y )= 0, Y ∈ B},
⊥>nB := {X ∈A | Ext j

A(X, Y )= 0, Y ∈ B, j > n},
⊥B :=

⋂
n∈N

⊥nB.

Similarly, B⊥n , B⊥>n and B⊥ are defined. Recall that ⊥B is said to be left perpen-
dicular to B in A, while B⊥ is said to be right perpendicular to B in A (see [Geigle
and Lenzing 1991]).

Let F : A→ A′ be an exact functor of abelian categories. Then F induces
derived functors D∗(F) : D∗(A)→ D∗(A′) for any ∗ ∈ {b,+,−,∅}, defined by
F(X•) := (F X i , Fd i )i∈Z for X• ∈ D∗(A).

By a ring we mean an associative ring R with identity. We denote by R-Mod
the category of all unitary left R-modules. For an R-module M , we denote by
projdim(R M), injdim(R M) and flatdim(R M) the projective, injective and flat di-
mensions of M , respectively. As usual, we simply write C(R), K(R) and D(R) for
the complex, homotopy and derived categories of R-Mod, respectively.

Let λ : R→ S be a homomorphism of rings. We denote by λ∗ : S-Mod→ R-Mod
the restriction functor induced by λ, and by D(λ∗) : D(S)→ D(R) the derived
functor of λ∗. If λ∗ is fully faithful, then λ is called a ring epimorphism. If D(λ∗)

is fully faithful, then λ is called a homological ring epimorphism. Note that λ is
a homological ring epimorphism if and only if the multiplication S⊗R S→ S is
an isomorphism and TorR

n (S, S)= 0 for all n ≥ 1. In this case, we identify S-Mod
with Im(λ∗), and D(S) with Im(D(λ∗)).

2.2. Semiorthogonal decompositions and half recollements. Semiorthogonal de-
compositions are also called hereditary torsion pairs in triangulated categories (see
[Neeman 2001, §9.1; Beligiannis and Reiten 2007, Chapter I.2]). The precise
definition reads as follows:

Definition 2.1. Let D be a triangulated category with a shift functor [1]. A pair
(X,Y) of full subcategories X and Y of D is called a semiorthogonal decomposition
of D if

(1) X and Y are triangulated subcategories of D.

(2) HomD(X, Y )= 0 for all X ∈ X and Y ∈ Y.
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(3) For each object D ∈ D, there is a triangle X D → D→ Y D
→ X D[1] in D

with X D ∈ X and Y D
∈ Y.

Semiorthogonal decompositions are closely related to half recollements of tri-
angulated categories. In fact, a pair (X,Y) of full triangulated subcategories of
D is a semiorthogonal decomposition of D if and only if there exists a lower half
recollement among X, D and Y, in the sense that there are four triangle functors
demonstrated in the diagram

X

i
&&
D

R
ee

L
&&
Y

j
ff

such that

(1) i and j are canonical inclusions;

(2) both (i, R) and (L, j) are adjoint pairs;

(3) Li = 0;

(4) for each object D ∈ D, there is a distinguished triangle i R(D) → D →
j L(D)→ i R(D)[1] in D, where i R(D)→ D is the counit adjunction and
D→ j L(D) is the unit adjunction.

In this case, there are equivalences of triangulated categories: D/X
'
−→ Y and

D/Y
'
−→ X. Observe that the conditions in Definition 2.1 are weaker than the ones

given in [Böhning et al. 2014; Huybrechts 2006; Orlov 2009] because i may not
have a left adjoint, nor j have a right adjoint. But, if i does have a left adjoint (or
equivalently, L has a fully faithful left adjoint), then the lower half recollement
can be completed to a recollement among triangulated categories X, D and Y

in the sense of Beilinson, Bernstein and Deligne (see [Beı̆linson et al. 1982] for
definition). Recollements of derived module categories appear often in studying
infinitely generated tilting modules (for example, see [Chen and Xi 2012; 2019]).

2.3. Ext-orthogonal pairs in abelian categories. Derived decompositions of abeli-
an categories are associated with both complete cotorsion pairs and complete
Ext-orthogonal pairs in abelian categories. The notion of complete cotorsion
pairs is classical and has been widely applied to relative homological algebra and
generalized tilting theory (see [Enochs and Jenda 2000; Beligiannis and Reiten
2007; Hovey 2002]), while the notion of complete Ext-orthogonal pairs seems only
to be employed in dealing with the telescope conjecture for hereditary rings (see
[Krause and Št’ovíček 2010]). We will show in the next section that the latter may
be useful in derived decompositions.

Throughout this section, A is an abelian category, and (X ,Y) is a pair of full
subcategories of A.
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Definition 2.2 [Krause and Št’ovíček 2010, Definition 2.1]. The pair (X ,Y) is said
to be Ext-orthogonal in A if X = ⊥Y and Y = X⊥; and complete Ext-orthogonal
in A if it is Ext-orthogonal and satisfies the gluing condition

(GC) For each object M ∈A, there exists a 5-term exact sequence in A

εM : 0−→ YM −→ X M −→ M −→ Y M
−→ X M

−→ 0

with X M , X M
∈ X and YM , Y M

∈ Y .

The following result implies that the two conditions (a) and (b) in Theorem 1.2
hold if and only if (X ,Y) is a complete Ext-orthogonal pair in A.

Lemma 2.3. Let A be an abelian category, and let X and Y be full subcategories
of A. If X ⊆ ⊥Y and (X ,Y) satisfies (GC), then

(1) X = ⊥0Y ∩⊥1Y and Y = X⊥0
∩X⊥1.

(2) (X ,Y) is complete Ext-orthogonal.

(3) Both X and Y are abelian subcategories of A.

Proof. (1) It follows from X ⊆ ⊥Y that X ⊆ ⊥0Y ∩ ⊥1Y . Now, we show the
converse of this inclusion. Let M ∈ ⊥0Y ∩⊥1Y . Since (X ,Y) satisfies (GC), there
is a five-term exact sequence εM for M in A. In particular, both YM and Y M

belong to Y . It then follows from HomA(M, Y M) = 0 that there is a short exact
sequence 0→ YM → X M → M → 0 in A. Further, this sequence splits due to
Ext1A(M, YM) = 0. Thus X M ' YM ⊕ M . Since HomA(X M , YM) = 0, we have
YM = 0 and M ' X M ∈ X . So ⊥0Y ∩⊥1Y ⊆ X . Thus the first equality in (1) holds.
Similarly, the second equality in (1) holds.

(2) It suffices to show both X = ⊥Y and Y = X⊥. But this follows from (1) and
the inclusion X ⊆ ⊥Y .

(3) We first prove that X is an abelian subcategory of A. Clearly, X is closed under
extensions, kernels of epimorphisms and cokernels of monomorphisms in A. Thus
X is an abelian subcategory of A if and only if X is closed under cokernels (or
equivalently, kernels) in A. But the latter follows from the dual statement of [Geigle
and Lenzing 1991, Proposition 1.1].

The conclusion on Y is an immediate consequence of [Geigle and Lenzing 1991,
Proposition 1.1]. �

Lemma 2.4 [Krause and Št’ovíček 2010, Lemma 2.9]. Let (X ,Y) be an Ext-
orthogonal pair in an abelian category A and M an object in A. Suppose that there
is an exact sequence

εM : 0−→ YM
ε−2

M−→ X M
ε−1

M−→ M ε0
M−→ Y M ε1

M−→ X M
−→ 0

in A with X M , X M
∈ X and YM , Y M

∈ Y .
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(1) There are isomorphisms of abelian groups for all X ∈ X and Y ∈ Y:

(ε−1
M )∗ : HomA(X, X M)

'
−→ HomA(X,M)

and

(ε0
M)∗ : HomA(Y M , Y ) '−→ HomA(M, Y ).

(2) If εN : 0→ YN
ε−2

N−→ X N
ε−1

N−→ N ε0
N−→ Y N ε1

N−→ X N
→ 0 is an exact sequence

in A with X N , X N
∈ X and YN , Y N

∈ Y , then each morphism f : M → N
extends uniquely to a morphism ε f : εM → εN of exact sequences:

εM :

ε f

��

0 // YM
ε−2

M //

Y f

��

X M
ε−1

M //

X f

��

M
ε0

M //

f

��

Y M
ε1

M //

Y f

��

X M //

X f

��

0

εN : 0 // YN
ε−2

N // X N
ε−1

N // N
ε0

N // Y N
ε1

N // X N // 0.

(3) Any exact sequence 0→ Y → X→ M→ Y ′→ X ′→ 0 in A with X, X ′ ∈ X
and Y, Y ′ ∈ Y is isomorphic to εM .

Now, let (X ,Y) be a complete Ext-orthogonal pair in an abelian category A. For
each object M ∈A, we fix an exact sequence in A:

(∗) εM : 0−→ YM
ε−2

M−→ X M
ε−1

M−→ M ε0
M−→ Y M ε1

M−→ X M
−→ 0

such that X M , X M
∈X and YM , Y M

∈Y . In particular, if M ∈X , then ε−1
M : X M→M

is an isomorphism and Y M
' 0; if M ∈ Y , then ε0

M : M→ Y M is an isomorphism
and X M ' 0.

By Lemma 2.3, both X and Y are abelian subcategories of A closed under direct
summands. Let i : X → A and j : Y → A be the inclusions. Then i and j are
exact functors. Moreover, i has a right adjoint r :A→ X and j has a left adjoint
` :A→ Y , which are defined as follows:

For each M ∈A and for a morphism f : M→ N in A,

r(M)= X M , r( f )= X f : X M → X N

and

`(M)= Y M , `( f )= Y f
: Y M
→ Y N .

These are well defined by Lemma 2.4. For the adjoint pair (i, r) of functors, the unit
adjunction of X ∈ X is given by the inverse of the isomorphism ε−1

X : r(X)→ X ,
and the counit adjunction of M ∈A is given by ε−1

M : ir(M)→ M . Similarly, the
unit and counit adjunctions associated with (`, j) can be defined by ε0

M .
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Now, we can form the diagram of functors between abelian categories:

(]) X
i
&&
A

r
ff

`
%%
Y

j

ff

where r is left exact and ` is right exact. In general, neither r nor ` is exact. So
(]) is neither a localization nor a colocalization sequence of abelian categories,
and therefore, it may not be completed into a recollement of abelian categories.
However, since i and j are exact, they induce derived functors between bounded
derived categories: Db(i) : Db(X )→ Db(A) and Db( j) : Db(Y)→ Db(A). With
the notation in (]), the sequence (∗) can be rewritten as follows:

(∗) εM : 0−→ YM
ε−2

M−→ r(M) ε
−1
M−→ M ε0

M−→ `(M) ε1
M−→ X M

−→ 0.

Finally, we consider the following full subcategories of A defined via the sequence
(∗):

A r-ad j := {M ∈A | X M
= 0} and A`-ad j := {M ∈A | YM = 0}.

The following properties of the two subcategories will be used in the proof of
Theorem 1.2(1).

Lemma 2.5. (1) A r-ad j is closed under extensions and quotients in A.

(2) A`-ad j is closed under extensions and subobjects in A.

(3) The restriction of r to A r-ad j is exact, that is, if 0→M−2
→M−1

→M0
→ 0

is an exact sequence in A with M i
∈ A r-ad j for −2 ≤ i ≤ 0, then 0 →

r(M−2)→ r(M−1)→ r(M0)→ 0 is an exact sequence in X .

(4) The restriction of ` to A`-ad j is exact, that is, if 0→M−2
→M−1

→M0
→ 0

is an exact sequence in A with M i
∈A`-ad j for−2≤ i≤0, then 0→`(M−2)→

`(M−1)→ `(M0)→ 0 is an exact sequence in Y .

Proof. We only prove (1) and (3) since (2) and (4) can be proved dually.
Let

0→ M−2 f
−→ M−1 g

−→ M0
→ 0

be an exact sequence in A. We regard it as a complex M• in Cb(A) with M0 in
degree 0. It follows from Lemma 2.4(2) that the sequence (∗), associated with M i

for −2≤ i ≤ 0, induces an exact sequence of complexes over A:

0−→ YM•
ε−2

M•−→ r(M•) ε
−1
M•−→ M• ε

0
M•−→ `(M•) ε

1
M•−→ X M•

→ 0,

where r(M•) means (r(M i ))i∈Z. Recall that r is a left exact functor and ` is a right
exact functor. Thus the complexes r(M•) and `(M•) are exact everywhere except
in the degrees 0 and −2, respectively. Since M• is an exact sequence, (1) holds.
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For (3), suppose M i
∈A r-ad j for−2≤ i ≤0. Then X M•

=0. To show that r(M•)
is a exact sequence, it suffices to show that the homomorphism r(g) : r(M−1)→

r(M0) is surjective (or equivalently, H 0(r(M•))= 0).
Let c(M•) be the cokernel of the chain map ε−2

M• . Taking cohomologies on the
sequence 0→ YM•→ r(M•)→ c(M•)→ 0, we get a long exact sequence in A:

H−1(r(M•))−→ H−1(c(M•))−→ H 0(YM•)−→ H 0(r(M•))−→ H 0(c(M•)).

Note that H−1(r(M•))= 0 and H 0(YM•)' Coker(Yg), where Yg : YM−1→ YM0 is
induced from g. Since the sequence M• is exact and 0→ c(M•)→M•→`(M•)→
0 is exact in Cb(A), we have H i (c(M•))' H i−1(`(M•)) for any i ∈Z. This implies
H 0(c(M•)) ' H−1(`(M•)) = 0 and H−1(c(M•)) ' H−2(`(M•)) ' Ker(Y f ),
where Y f

: `(M−2)→ `(M−1) is induced from f . Consequently, there is a short
exact sequence in A:

0−→ Ker(Y f )−→ Coker(Yg)−→ H 0(r(M•))−→ 0.

Clearly, Ker(Y f ),Coker(Yg) ∈ Y and H 0(r(M•)) ∈ X since Y and X are abelian
full subcategories of A by Lemma 2.3(3). Thus H 0(r(M•)) ∈ X ∩Y . It follows
from X = ⊥Y that H 0(r(M•))= 0. So (3) holds. �

3. Derived decompositions of abelian categories

In this section we will prove Theorem 1.2. In particular, we show that a complete
Ext-orthogonal pair is a derived decomposition of an abelian category with enough
projectives and injectives if and only if the five-term exact sequences for both
projective and injective objects are reduced to four terms.

3.1. Sufficient conditions for the existence of derived decompositions. Complete
Ext-orthogonal pairs and derived decompositions are defined in terms of abelian cat-
egories. We will show that derived decompositions induce complete Ext-orthogonal
pairs.

Proposition 3.1. Let A be an abelian category and let X and Y be full subcategories
of A. Given ∗ ∈ {b,+,−,∅}, if (X ,Y) is a D∗-decomposition of A, then it is a
complete Ext-orthogonal pair in A.

Proof. Suppose (X ,Y) is a D∗-derived decomposition of A. By Definition 1.1(D2),
X ⊆ ⊥Y , and by Definition 1.1(D3), for each M ∈ A, there is a triangle X•→
M→ Y •→ X•[1] in D∗(A) such that X• ∈D∗(X ) and Y • ∈D∗(Y), where D∗(X )
and D∗(Y) can be regarded as triangulated subcategories of D∗(A) by (D1) in
Definition 1.1. By taking cohomologies on this triangle, one gets the long exact
sequence 0→ H−1(Y •)→ H 0(X•)→M→ H 0(Y •)→ H 1(X•)→ 0 in A. Recall
that X is an abelian subcategory of A. Since X• ∈D∗(X ), we have H i (X•)∈X for
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all i ∈Z. Particularly, both H 0(X•) and H 1(X•) lie in X . Similarly, both H−1(Y •)
and H 0(Y •) lie in Y . Thus the pair (X ,Y) satisfies the gluing condition. Now, by
Lemma 2.3(2), (X ,Y) is a complete Ext-orthogonal pair in A. �

Having shown that D∗-decompositions are complete Ext-orthogonal pairs, we
now consider its converse:

Given a complete Ext-orthogonal pair (X ,Y) in an abelian category
A, when is it a D∗-decomposition of A for ∗ ∈ {b,+,−,∅}?

To address this question, we use derived categories of exact categories. Recall
that an exact category (in the sense of Quillen) is an additive category E endowed
with a class of conflations closed under isomorphism and satisfying certain axioms
(for example, see [Keller 1996, §4]). In case that E is an abelian category, the class
of conflations coincides with the class of short exact sequences.

Let E be a full subcategory of the abelian category A. Suppose that E is closed
under extensions in A, that is, for any exact sequence 0→ X→ Y → Z→ 0 in A
with both X, Z ∈ E , we have Y ∈ E . Then E endowed with the short exact sequences
of A having their terms in E is an exact category and the inclusion E ⊆A is a fully
faithful exact functor. Thus E is called a fully exact subcategory of A.

A complex X• ∈ C(E) is said to be strictly exact if it is exact in C(A) and all of
its boundaries belong to E . Let Kac(E) be the full subcategory of K(E) consisting
of those complexes which are isomorphic to strictly exact complexes. Then Kac(E)
is a full triangulated subcategory of K(E). The unbounded derived category of E ,
denoted by D(E), is defined to be the Verdier quotient of K(E) by Kac(E). Similarly,
the bounded-below, bounded-above and bounded derived categories D+(E), D−(E)
and Db(E) can be defined through bounded-below, bounded-above and bounded
complexes over E , respectively. Moreover, the canonical functor D∗(E)→ D(E) is
fully faithful for any ∗∈{+,−, b}. If E is closed under cokernels of monomorphisms
in A, then a complex X• ∈ Cb(E) is strictly exact if and only if it is exact in C(A).

For more details on derived categories of exact categories, we refer the reader to
[Keller 1996]. The following result follows from [Keller 1996, Theorem 12.1].

Lemma 3.2. Let E be a full subcategory of an abelian category A, satisfying the
two conditions:

(i) If 0→ X→ Y → Z→ 0 is an exact sequence in A with X ∈ E , then Y ∈ E if
and only if Z ∈ E .

(ii) For each object M ∈A, there is a long exact sequence 0→ M→ E0→ E1→

· · · → En−1→ En→ 0 in A for a natural number n such that Ei ∈ E for all
0≤ i ≤ n.

Then the inclusion E ⊆ A induces a triangle equivalence D+(E) '−→ D+(A)
which can be restricted to an equivalence Db(E) '−→ Db(A).
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Remark 3.3. If (ii) in Lemma 3.2 is strengthened as

(ii′) There is a natural number n such that, for each object M ∈A, there is a long
exact sequence

0→ M→ E0→ E1→ · · · → En−1→ En→ 0

in A with Ei ∈ E for all 0≤ i ≤ n,

then the inclusion E ⊆ A induces a triangle equivalence D(E) → D(A) which
restricts to an equivalence D∗(E)→ D∗(A) for any ∗ ∈ {+,−, b}.

For a proof of this result and its dual statement, we refer the reader to [Positselski
2017, Proposition A.5.6]

Proof of Theorem 1.2(1). It follows from (a), (b) and Lemma 2.3 that (X ,Y) is a
complete Ext-orthogonal pair in A and that both X and Y are abelian subcategories
of A. In particular, (D2) in Definition 1.1 holds.

Now, we keep all the notation introduced in Section 2.3. Under the assumptions
of (a), (b) and (c), we show that the functor D∗(i) :D∗(X )→D∗(A), induced from
the inclusion i : X →A, is fully faithful.

By Lemma 2.5(1), A r-ad j is closed under extensions in A and thus a fully
exact subcategory of A. Moreover, i has a right adjoint r : A→ X which is an
exact functor when restricted to A r-ad j by Lemma 2.5(3). Thus r : A r-ad j → X
induces a derived functor D∗(r) : D∗(A r-ad j )→ D∗(X ). Since the functor i is
fully faithful, the composition of i and r is isomorphic to the identity functor of X .
Thus (D∗(i),D∗(r)) is an adjoint pair and the composition of D∗(i) with D∗(r) is
isomorphic to the identity functor of D∗(X ). This implies that D∗(i) : D∗(X )→
D∗(A r-ad j ) is fully faithful. Further, for each object M ∈ A, it follows from (c)
that there is a monomorphism M→ I in A such that I ∈A r-ad j . Since A r-ad j is
closed under quotients in A by Lemma 2.5(1), there is an exact sequence 0→M→
I → J → 0 in A with I, J ∈ A r-ad j . By Remark 3.3, the inclusion A r-ad j ⊆ A
of exact categories induces a triangle equivalence D∗(A r-ad j )

'
−→ D∗(A) for any

∗ ∈ {b,+,−,∅}. Consequently, D∗(i) : D∗(X )→ D∗(A) is fully faithful.
Dually, under (a), (b) and (d), the functor D∗( j) : D∗(Y)→ D∗(A), induced

from the inclusion j : Y→A, is fully faithful. This follows from Lemmas 2.5(2)
and 2.5(4), and the dual statement of Lemma 3.2.

Thus, Definition 1.1(D1) is satisfied. We identify D∗(X ) and D∗(Y) with
Im(D∗(i)) and Im(D∗( j)), respectively. It remains to check Definition 1.1(D3).

Let N • ∈ D∗(A). Since D∗(A r-ad j )
'
−→ D∗(A), there is a complex M• :=

(M i )i∈Z ∈ C∗(A r-ad j ) such that N • ' M• in D∗(A). Moreover, since (X ,Y) is
a complete Ext-orthogonal pair in A, it follows from Lemma 2.4(2) that each
morphism f : M→ N in A extends uniquely to a morphism ε f : εM→ εN of exact
sequences (see Lemma 2.4 for notation). Applying this to the differentials of M•
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yields a long exact sequence

εM• : 0 // YM•
ε−2

M• // X M•
ε−1

M• // M•
ε0

M• // Y M•
ε1

M• // X M• // 0

in C∗(A) such that X M•, X M•
∈C∗(X ) and YM•, Y M•

∈C∗(Y). Since M i
∈A r-ad j

for any i ∈ Z, we have X M i
= 0. This implies X M•

= 0 and thus the exact sequence
εM• is of the form:

εM• : 0 // YM•
ε−2

M• // X M•
ε−1

M• // M•
ε0

M• // Y M• // 0.

Let Z M• be the mapping cone of the chain map ε−1
M• . Then X M•→ M•→ Z M•→

X M•[1] is a distinguished triangle in D∗(A). We show Z M• ∈ D∗(Y).
Since ε−1

M• is the composite of the surjection X M•→Coker(ε−2
M•)with the injection

Coker(ε−2
M•)→ M•, there is a triangle YM•[1]→ Z M•→ Y M•

→ YM•[2] in D∗(A)
(constructed from the octahedral axiom of triangulated categories). As D∗(Y) is
a full triangulated subcategory of D∗(A), it follows from YM•, Y M•

∈D∗(Y) that
Z M• ∈ D∗(Y).

Since N • ' M• in D∗(A), there is a triangle X M• → N •→ Z M• → X M•[1]
satisfying that X M• ∈ D∗(X ) and Z M• ∈ D∗(Y). This shows Definition 1.1(D3).
Thus (X ,Y) is a derived decomposition of D∗(A). �

As a consequence of Theorem 1.2(1), we have

Corollary 3.4. Let A be an abelian category, and let X and Y be full subcategories
of A with X ⊆ ⊥Y . If for each object M ∈ A, there is a short exact sequence
0 → X → M → Y → 0 in A with X ∈ X and Y ∈ Y , then (X ,Y) is a D∗-
decomposition of A for any ∗ ∈ {b,+,−,∅}.

3.2. Necessary conditions for the existence of derived decompositions. Through-
out this section, A is an abelian category and (X ,Y) is a complete Ext-orthogonal
pair in A. We keep all the notation in Section 2.3.

Lemma 3.5. Let M ∈A and N ∈ Y .

(1) There is a long exact sequence of extension groups for n ∈ Z:

· · · −→ Extn−2
A (YM , N )−→ ExtnA(`(M), N )

−→ ExtnA(M, N )−→ Extn−1
A (YM , N )−→ · · ·

(2) If M ∈ ⊥1Y , then `(M) ∈ ⊥1Y .

(3) If M ∈ ⊥>0Y , then Extn−2
A (YM , N )' ExtnA(`(M), N ) for all n ≥ 2.

Proof. (1) We define C = Im(ε−1
M ) and K = Im(ε0

M) in εM . Then we have two
exact sequences 0→ YM → r(M)→ C → 0 and 0→ K → `(M)→ X M

→ 0.
It follows from the first exact sequence that Extn−1

A (YM , N )' ExtnA(C, N ) for all
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n ∈ Z. Similarly, it follows from the second exact sequence that ExtnA(`(M), N )'
ExtnA(K , N ) for all n ∈ Z. We then apply ExtnA(−, N ) to the exact sequence
0→ C→ M→ K → 0 and get the desired exact sequence. Note that (2) and (3)
follow from (1). �

From Lemma 3.5, we have the following

Corollary 3.6. Assume that A has enough projectives. Let P ∈ P(A) and N ∈ Y .
Then

(1) `(P) ∈ ⊥1Y and Extn−2
A (YP , N )' ExtnA(`(P), N ) for all n ≥ 2.

(2) `(P) ∈ ⊥>0Y if and only if YP = 0.

Proof. If P ∈ P(A), then P ∈ ⊥>0Y . Now, (1) follows from Lemma 3.5(2)–(3).
Further, by (1), `(P) ∈ ⊥>0Y if and only if ExtmA(YP , Z)= 0 for all Z ∈ Y and for
all m ≥ 0. Due to YP ∈ Y , HomA(YP , YP)= 0 implies YP = 0. Thus (2) holds. �

We need the following result from [Geigle and Lenzing 1991, Proposition 4.3].

Lemma 3.7. Let B be an abelian full subcategory of A and let λ : B→ A be the
inclusion. Then Db(λ) : Db(B)→ Db(A) is fully faithful if and only if , for any
X, Y ∈ B and for any n ∈ N, the homomorphism ϕn

X,Y : ExtnB(X, Y )→ ExtnA(X, Y )
induced from Db(λ) is an isomorphism.

The following result, which will be used in Section 4, is implied by Lemmas 3.7
and 3.5(1). Here, we omit its proof.

Corollary 3.8. (1) Suppose that Db( j) : Db(Y) → Db(A) is fully faithful. If
I ∈ I(Y), then ExtnA(M, I )= 0 for any M ∈A and n ≥ 2.

(2) Suppose that Db(i) : Db(X )→ Db(A) is fully faithful. If P ∈ P(X ), then
ExtnA(P,M)= 0 for any M ∈A and n ≥ 2.

Lemma 3.9. Let B be an abelian full subcategory of A.

(1) Assume that B has enough projectives. Then the derived functor Db(B)→
Db(A) induced from the inclusion B ⊆A is fully faithful if and only if P(B)=
B∩⊥>0B.

(2) Assume that B has enough injectives. Then the derived functor Db(B)→Db(A)
induced from the inclusion B⊆A is fully faithful if and only if I(B)=B∩B⊥>0.

Proof. We only prove (1) since (2) can be proved dually. Note that the inclusions
B∩⊥>0B ⊆ B∩⊥1B ⊆ P(B) always hold.

Let λ :B→A be the inclusion. By Lemma 3.7, to prove (1), it is enough to show
that, for any X, Y ∈ B and for any n ∈N, the homomorphism ϕn

X,Y : ExtnB(X, Y )→
ExtnA(X, Y ) is an isomorphism. Clearly, ϕ0

X,Y is the identity map. So it suffices to
check that ϕn

X,Y is an isomorphism for n ≥ 1.
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Suppose that Db(λ) is fully faithful. If X ∈ P(B), then ExtnB(X, Y )= 0 for all
n ≥ 1, and therefore ExtnA(X, Y )= 0. Thus X ∈ ⊥>0B and P(B)⊆ B∩⊥>0B. So
the necessity of Lemma 3.9(1) holds.

Conversely, suppose P(B) = B ∩ ⊥>0B. This implies that ϕn
X,Y is an isomor-

phism for X ∈ P(B) because ExtnB(X, Y )= 0= ExtnA(X, Y ). Since B has enough
projectives, any object X ∈ B has a projective resolution in B. This resolution is
also exact in A because B is an abelian full subcategory of A. Now, for a fixed
object Y ∈ B, we apply the functors ExtiB(−, Y ) and ExtiA(−, Y ) for i ∈ N to this
resolution and then get two long exact sequences of extension groups, linked by
commutative diagrams. Note that ExtiA(P, Y )= 0 for all i ≥ 1 and P ∈ P(B). By
induction on n and by the five lemma, we can show that ϕn

X,Y are isomorphisms for
n ≥ 1. Thus Db(λ) is fully faithful. �

Lemma 3.10. (1) If A has enough projectives, then so does Y , and P(Y) =
add({`(P) | P ∈ P(A)}).

(2) If A has enough injectives, then so does X , and I(X )= add({r(I ) | I ∈I(A)}).

Proof. (1) Since j is an exact functor and (`, j) is an adjoint pair, ` is a right exact
functor and preserves projective objects. This means `(P) ∈ P(Y) for P ∈ P(A).
Given any object Y ∈Y , since A has enough projectives, there exists an epimorphism
π :Q→ j (Y ) in A with Q∈P(A). Hence `(π) :`(Q)→`( j (Y )) is an epimorphism
in Y . As `( j (Y ))' Y , `(π) is an epimorphism from `(Q) to Y . This shows that
Y has enough projectives. Moreover, if Y ∈ P(Y), then Y is a direct summand of
`(Q). This shows (1). (2) can be proved dually. �

The next result characterizes when Db(i) and Db( j) are fully faithful.

Lemma 3.11. (1) If A has enough projectives, then Db( j) : Db(Y)→ Db(A) is
fully faithful if and only if YP = 0 for any object P ∈ P(A).

(2) If A has enough injectives, then Db(i) :Db(X )→Db(A) is fully faithful if and
only if X I

= 0 for any object I ∈ I(A).

Proof. We show (1) by Lemma 3.9(1). By Lemmas 3.10(1) and 3.9(1), the functor
Db( j) is fully faithful if and only if `(P) ∈ ⊥>0Y for all P ∈ P(A). But the latter
is equivalent to saying YP = 0 by Corollary 3.6(2). Thus (1) holds. Dually, (2) can
be proved by Lemma 3.9(2). �

Proof of Theorem 1.2(2). The sufficiency is a direct consequence of Theorem 1.2(1).
To show the necessity, we suppose that (X ,Y) is a D∗-decomposition of A. Then
(a) and (b) hold by Proposition 3.1. If A has enough injectives, then (c) and (c′) are
equivalent. Similarly, if A has enough projectives, then (d) and (d′) are equivalent.
Note that D∗(i) : D∗(X )→ D∗(A) can be restricted to bounded derived categories.
By Definition 1.1(D1), Db(i) :Db(X )→Db(A) is fully faithful. Similarly, Db( j) :
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Db(Y)→ Db(A) is fully faithful. Since A has enough projectives and injectives, it
follows from Lemma 3.11 that (c′) and (d′) in Theorem 1.2(2) hold. �

3.3. Derived decompositions versus semiorthogonal decompositions. In this sec-
tion we establish relations between derived decompositions of abelian categories
and semiorthogonal decompositions of several derived categories.

The following result is an easy observation from Definitions 2.1 and 1.1.

Lemma 3.12. Let A be an abelian category, X and Y abelian subcategories of
A and ∗ ∈ {b,+,−,∅}. Suppose that the inclusions i : X ⊆ A and j : Y ⊆ A
induce fully faithful functors D∗(i) : D∗(X ) → D∗(A) and D∗( j) : D∗(Y) →
D∗(A), respectively. If (Im(D∗(i)), Im(D∗( j))) is a semiorthogonal decomposition
of D∗(A), then (X ,Y) is a D∗-decomposition of A.

To obtain the converse of Lemma 3.12, we consider abelian categories with
additional properties.

Definition 3.13. Let A be an abelian category.

(1) A is complete (respectively, cocomplete) if products (respectively, coproducts)
indexed over sets exist in A; and bicomplete if it is complete and cocomplete.

(2) A satisfies AB4 if it is cocomplete such that coproducts of short exact sequences
(indexed over sets) are exact. Dually, A satisfies AB4′ if it is complete and
products of short exact sequences (indexed over sets) are exact.

If A satisfies AB4, then D(A) has coproducts indexed over sets, and therefore the
coproducts of distinguished triangles in D(A) are distinguished triangles. Moreover,
D(A) itself is the smallest full triangulated subcategory of D(A) containing A
and being closed under coproducts. Dually, if A satisfies AB4′, then D(A) has
products indexed over sets, and therefore the products of triangles in D(A) are
again triangles.

Note that if a cocomplete abelian category has enough injectives, then it satisfies
AB4. Dually, if a complete abelian category has enough projectives, then it satisfies
AB4′. Examples of abelian categories with both AB4 and AB4′ are the module
categories of rings, and the categories of additive functors from essentially small
triangulated categories to the category of abelian groups (see [Neeman 2001, Chapter
6] for details).

Lemma 3.14. Let A be an abelian category and let X and Y be abelian subcate-
gories of A. Assume that

(1) X satisfies AB4 and the inclusion i : X ⊆A preserves coproducts,

(2) Y satisfies AB4′ and the inclusion j : Y ⊆A preserves products, and

(3) HomD(A)(X, Y [n])= 0 for all X ∈ X , Y ∈ Y and n ∈ Z.
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Then HomD(A)(i(X•), j (Y •))= 0 for all X• ∈ D(X ) and Y • ∈ D(Y).

Proof. For any Y ∈Y , let X(Y ) be the full subcategory of D(X ) consisting of objects
X• such that HomD(A)(i(X•), j (Y )[n]) = 0 for all n ∈ Z. Then X(Y ) is a full
triangulated subcategory of D(X ). By (1), D(X ) has coproducts and X(Y )⊆D(X )
is closed under coproducts. Moreover, X ⊆ X(Y ) by (3). Note that D(X ) is the
smallest full triangulated subcategory of D(X ) containing X and being closed under
coproducts. Thus X(Y )= D(X ). It follows that HomD(A)(i(X•), j (Y )[n])= 0 for
all X• ∈D(X ) and n ∈ Z. Dually, when X• ∈D(X ) is fixed, one can apply (2) and
(3) to prove HomD(A)(i(X•), j (Y •))= 0 for all Y • ∈ D(Y). �

Proposition 3.15. Suppose that A is an abelian category satisfying AB4 and AB4′.
Let X and Y be abelian subcategories of A and let ∗ ∈ {b,+,−,∅}. Then the
following are equivalent:

(1) (X ,Y) is a D∗-decomposition of A.

(2) The inclusions i : X ⊆ A and j : Y ⊆ A induce fully faithful functors
D∗(i) : D∗(X ) → D∗(A) and D∗( j) : D∗(Y) → D∗(A), respectively, and
(Im(D∗(i)), Im(D∗( j))) is a semiorthogonal decomposition of D∗(A).

Proof. (2) implies (1) by Lemma 3.12. Suppose (1) holds. Then (X ,Y) is a
complete Ext-orthogonal pair in A by Proposition 3.1. In particular, X = ⊥Y . It
follows that X is closed under coproducts in A and i : X ⊆A preserves coproducts.
Since A satisfies AB4, X also satisfies AB4. Dually, Y is closed under products in A
and satisfies AB4′. Now, (2) holds by Definitions 1.1 and 2.1 and Lemma 3.14. �

As a consequence of Theorem 1.2(2) and Proposition 3.15, we can construct half
recollements of derived categories from derived decompositions.

Corollary 3.16. Let A be a bicomplete abelian category with enough projectives
and injectives. If (X ,Y) is a derived decomposition of A, then there exists a lower
half recollement

D∗(X )
D∗(i)

++
D∗(A)

R∗(r)
kk

L∗(`)
++
D∗(Y)

D∗( j)
kk

for ∗ ∈ {b,+,−,∅}, where R∗(r) and L∗(`) denote the right- and left-derived
functors of r and `, respectively.

Remark 3.17. Consider the statements:

(1) (X ,Y) is a D-decomposition of A;

(2) (X ,Y) is a D∗-decomposition of A for any ∗ ∈ {+,−};

(3) (X ,Y) is a derived decomposition of A.
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Then (1) ⇒ (2) ⇒ (3). Thus the existence of Db-decompositions is the weak-
est condition among those other type of derived decompositions introduced in
Definition 1.1. This is why we sometimes pay more attention to the existence of
such decompositions.

To show the above, we consider the triangle given in Definition 1.1(D3). If
H n(M•) = H n+1(M•) = 0 for some integer n, then H n+1(X M•) ' H n(Y M•).
Clearly, H n+1(X M•)∈X and H n(Y M•)∈Y since X and Y are abelian subcategories
of A. However, X∩Y={0} by Definition 1.1(D2). Thus H n+1(X M•)=H n(Y M•)=

0.

Question. Does (3) always imply (1)? Theorem 1.2(2) tells us this is the case if A
has enough projectives and injectives.

4. Constructing derived decompositions of module categories

In this section we first apply Theorem 1.2 to show that homological ring epi-
morphisms can provide derived decompositions (see Proposition 4.1), and then
prove that localizing subcategories and right perpendicular subcategories in abelian
categories also give rise to derived decompositions (see Proposition 4.6). Finally,
we construct derived decompositions for module categories over left nonsingular
rings and commutative noetherian rings (see Corollaries 1.5 and 4.10, respectively).
This construction shows also that the module category of a commutative ring with
the Krull dimension at most 1 admits a derived stratification (see Corollary 4.11).

4.1. Homological ring epimorphisms . In this section we show that homological
ring epimorphisms produce not only derived decompositions, but also derived
equivalences and recollements.

Throughout this section, we assume that λ : R → S is a homological ring
epimorphism. Define

A := R-Mod, X := S-Mod,

Y := {Y ∈ R-Mod | HomR(S, Y )= 0= Ext1R(S, Y )},

Z := {Z ∈ R-Mod | S⊗R Z = 0= TorR
1 (S, Z)}.

Proposition 4.1. (1) (X ,Y) is a complete Ext-orthogonal pair in A if and only if
projdim(R S)≤ 1.

(2) (X ,Y) is a derived decomposition of A if and only if projdim(R S) ≤ 1 and
HomR(Coker(λ), Ker(λ)) = 0.

Proof. (1) Since λ is a ring epimorphism, the restriction functor λ∗ :X→A is fully
faithful. So, we identify X with the image of λ∗. Further, since λ is homological,
the derived functor Db(λ∗) :D

b(S)→Db(R) is fully faithful. Note that S S ∈P(X ),
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the category of projective S-modules. If (X ,Y) is a complete Ext-orthogonal pair
in A, then projdim(R S)≤ 1 by Corollary 3.8(2). This shows the necessity of (1).

To show the sufficiency of (1), we assume projdim(R S) ≤ 1. Then Y = S⊥.
It follows from [Geigle and Lenzing 1991, Proposition 1.1] that Y is an abelian
full subcategory of A. Since ⊥Y contains R S and is closed under direct sums in
A, it must contain all projective S-modules. Moreover, each object of X admits
a projective resolution by projective S-modules. Consequently, for any X ∈ X ,
Y ∈ Y and n ∈N, HomDb(R)(X, Y [n])' HomDb(R)(�

n
S(X), Y )= 0, where �n

S(X)
denotes an n-th syzygy module of S X . This implies X ⊆ ⊥Y . By Lemma 2.3(2), to
show (1), it suffices to prove that (X ,Y) satisfies (GC).

The functor Db(λ∗) :D
b(S)→Db(R) has a right adjoint functor RHomR(S,−) :

Db(R)→Db(S). Let ε :Db(λ∗) RHomR(S,−)→ IdDb(R) be the counit adjunction.
Then, for each R-module M , there exists a distinguished triangle in D(R):

(†) Db(λ∗)RHomR(S,M) εM
−→ M −→ Y •M −→ Db(λ∗)RHomR(S,M)[1].

Since λ is homological, Db(λ∗) is fully faithful. So RHomR(S, εM) is an isomor-
phism in Db(S). This means Y •M ∈ Y := Ker(RHomR(S,−))⊆ Db(R). Thus

Y •M ∈ Y= {Y • ∈ Db(R) | HomDb(R)(S, Y •[n])= 0 for all n ∈ Z}

and
Y = Y∩ R-Mod.

Taking cohomologies on the triangle (†) yields an exact sequence of R-modules:

0−→ H−1(Y •M)−→ HomR(S,M) HomR(λ,M)
−−−−−→ M

−→ H 0(Y •M)−→ Ext1R(S,M)−→ 0,

where M is identified with HomR(R,M). Clearly, HomR(S,M) and Ext1R(S,M)
belong to X . On the other hand, since projdim(R S) ≤ 1, the R-module S is
isomorphic in Db(R) to a two-term complex of projective R-modules and there is
the exact sequence by [Chen and Xi 2012, Lemma 3.4]:

0−→ HomDb(R)(S, H n−1(Y •)[1])−→ HomDb(R)(S, Y •[n])

−→ HomDb(R)(S, H n(Y •))−→ 0.

This shows Y = {Y • ∈ Db(R) | H n(Y •) ∈ Y for all n ∈ Z}. It then follows from
Y •M ∈Y that H i (Y •M)∈Y for any i ∈Z. Now, we define X M :=HomR(S,M), X M

:=

Ext1R(S,M), YM := H−1(Y •M) and Y M
:= H 0(Y •M). This shows the sufficiency

of (1).

(2) Clearly, A has enough projectives and injectives. If M is injective, then X M
= 0.

Note that YM ' Ker(HomR(λ,M)) ' HomR(Coker(λ),M) as R-modules. By
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(1) and Theorem 1.2, (X ,Y) is a derived decomposition of A if and only if
projdim(R S) ≤ 1 and HomR(Coker(λ),M) = 0 whenever M is projective. To
check HomR(Coker(λ),M)= 0 for projective modules M , we only need to show
HomR(Coker(λ), R)= 0. Because HomR(Coker(λ),−) commutes with products
and each projective R-module can be embedded into a product of copies of R.
However, since λ is a ring epimorphism, HomR(Coker(λ), S) = 0. This implies
HomR(Coker(λ), R)' HomR(Coker(λ),Ker(λ)). Thus (2) holds. �

When dealing with flat dimensions, we have

Proposition 4.2. (1) (Z,X ) is a complete Ext-orthogonal pair in A if and only if
flatdim(SR)≤ 1.

(2) (Z,X ) is a derived decomposition of A if and only if flatdim(SR) ≤ 1 and
Coker(λ)⊗R I = 0 for any injective R-module I .

Proof. The proof of this result is similar to the one of Proposition 4.1. For the
convenience of the reader, we only sketch a few key points of the proof.

Let J := HomZ(SS,Q/Z). Then J is an injective cogenerator in S-Mod. Fur-
ther, injdim(R J )= flatdim(SR) because a right R-module N is flat if and only if
R HomZ(N ,Q/Z) is injective. So the necessity of (1) follows from Corollary 3.8(1).
If flatdim(SR)≤ 1, then

(1) Z is abelian full subcategory of A.

(2) For each M• ∈ D(R), S⊗L
R M• = 0 if and only if H n(M•) ∈ Z for all n ∈ Z.

(3) For each M ∈A, there is an exact sequence 0→ TorR
1 (S,M)→ X M→ M→

S⊗R M→ X M
→ 0 of R-modules such that X M , X M

∈ Z. Clearly, X M
'

Coker(λ)⊗R M as R-modules. Now, all other assertions in Proposition 4.2
can be concluded from Theorem 1.2. �

As a consequence of Proposition 4.2, we have the result on localizations of
commutative rings.

Corollary 4.3. Let R be a commutative noetherian ring, 8 a multiplicative subset
of R, S the localization of R at 8 and U := {X ∈ R-Mod | S ⊗R X = 0}. Then
(U, S-Mod) is a derived decomposition of R-Mod.

Proof. Let λ : R → S be the localization of R at 8. Then S is commutative
and flat as an R-module, and therefore λ is a homological ring epimorphism. By
Proposition 4.2(2), it suffices to show Coker(λ)⊗R I = 0 (or equivalently, λ⊗R I
is surjective) for any injective R-module I .

Since R is a commutative noetherian ring, each injective R-module is a direct
sum of indecomposable injective R-modules (see [Enochs and Jenda 2000, The-
orem 3.3.10]). So we only need to check the surjection of λ⊗R I whenever I is
indecomposable. By [Enochs and Jenda 2000, Theorem 3.3.7], there is a prime ideal
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p of R such that I is isomorphic to the injective envelope E(R/p) of the R-module
R/p. Moreover, by [Enochs and Jenda 2000, Theorem 3.3.8(6)], λ⊗R E(R/p) is
an isomorphism if 8∩ p=∅; and S⊗R E(R/p)= 0 if 8∩ p 6=∅. This implies
that λ⊗R E(R/p) is always surjective, and therefore λ⊗R I is surjective. Thus
Corollary 4.3 follows from Proposition 4.2(2). �

Next, we show that the derived decompositions in Propositions 4.1 and 4.2
provide also lower half recollements of derived categories.

For the ring epimorphism λ : R → S, we get naturally a complex Q• : 0→
R λ
−→ S→ 0 of R-R-bimodules with R and S in degrees −1 and 0, respectively.

Let

F := Q•[−1]⊗L
R− :D(R)→D(R), G :=RHomR(Q•[−1],−) :D(R)→D(R)

and let Tria(R Q•) be the smallest full triangulated subcategory of D(R) containing
Q• and being closed under direct sums. Then (F,G) is an adjoint pair of triangle
functors and the restriction of G to Tria(R Q•) is fully faithful (see [Nicolás and
Saorín 2009, §4]).

In the case (2) of Proposition 4.1, it follows from Corollary 3.16 that there is a
lower half recollement of derived categories:

(‡) D∗(S)

D∗(λ∗) ++
D∗(R)

R∗ HomR(S,−)
kk

L∗(`)
++
D∗(Y)

D∗( j)
kk

for ∗ ∈ {b,+,−,∅}, where ` : R-Mod → Y is a left adjoint of the inclusion
j : Y→ R-Mod. We claim that ` is the composition of the functors:

R-Mod ↪→ D∗(R) G
−→ D∗(R) H0

−→ R-Mod.

In fact, there is a canonical triangle Q•[−1] σ
−→ R λ

−→ S π
−→ Q• in Db(R⊗Z Rop)

which induces a sequence of triangle functors from D∗(R) to D∗(R)

(‡) G[−1] π∗−→ D(λ∗)RHomR(S,−)
λ∗
−→ RHomR(R,−)

σ∗
−→ G

such that their operations on a fixed object in D∗(R) yield a triangle in D∗(R).
Clearly, RHomR(R,−) can be identified with the identity functor of D∗(R) up to
natural isomorphism. So, for an R-module M , by taking cohomologies on (‡), we
get a long exact sequence of R-modules:

0−→ H−1(G(M))−→ HomR(S,M) HomR(λ,M)
−−−−−→ M

−→ H 0(G(M))−→ Ext1R(S,M)−→ 0.
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Now, as in the proof of Proposition 4.1(1), both HomR(S,M) and Ext1R(S,M)
belong to X and both H−1(G(M)) and H 0(G(M)) belong to Y . Thus `(M) =
H 0(G(M)) by the definition of `.

Similarly, in the case (2) of Proposition 4.2, we obtain a lower half recollement:

D∗(Z)
D∗(i)

++
D∗(R)

R∗(r)
kk

S⊗L
R− ++

D∗(S)
D∗(λ∗)

kk ,

where r := H 0 F(−) : R-Mod→ Z is a right adjoint of the inclusion i : Z →
R-Mod. The five-term exact sequence of R-modules is given by 0→TorR

1 (S,M)→
H 0(F(M))→ M→ S⊗R M→ H 1(F(M))→ 0.

Proof of Corollary 1.3. This follows from Propositions 4.1(2) and 4.2(2) together
with the above-mentioned two half-recollements. �

An example of Corollary 1.3(3) reads as follows: Let R be a 1-Gorenstein ring
(that is, a commutative noetherian ring R with injdim(R)≤ 1) and let 8 be the set
of all nonzero divisors of R. Then λ is always injective, and R S is flat, injective
and of projective dimension at most 1, satisfying (a) and (b) of Theorem 1.2. In
the case Z⊆Q, we get a recollement (D∗(Q),D∗(Z),D∗(Y)) and an equivalence
D∗(Y)' D∗(Z).

4.2. Localizing subcategories. In this section we construct derived decompositions
from localizing subcategories.

Let A be an abelian category and X a full subcategory of A. We say that X
is a Serre subcategory if it is closed under subobjects, quotients and extensions.
In particular, X is an abelian subcategory of A, and the quotient category A/X
(in the sense of Gabriel, Grothendieck and Serre) is defined by inverting all these
morphisms in A that have kernels and cokernels in X . The quotient category has the
same objects as A and is again an abelian category. Moreover, there is a canonical
exact functor q :A→A/X (called the quotient functor) such that the kernel of q
is exactly X .

A Serre subcategory X of A is called a localizing subcategory of A if q has a
right adjoint s :A/X →A (called the section functor). This is equivalent to saying
that q restricts to an equivalence of additive categories from X⊥0,1

:= X⊥0
∩X⊥1

to A/X (see [Gabriel 1962, Chapter III.2; Geigle and Lenzing 1991, Proposition
2.2]). In this case, X = ⊥0,1(X⊥0,1). Note that X⊥0,1 is closed under extensions
and kernels in A (see, for example, [Geigle and Lenzing 1991, Proposition 1.1]),
but it may not be an abelian subcategory of A in general.

If A is a Grothendieck category (that is, an abelian category with a generator
and coproducts such that direct limits of exact sequences are exact), then a Serre
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subcategory of A is localizing if and only if it is closed under coproducts in A (see
[Geigle and Lenzing 1991, Proposition 2.5]).

Lemma 4.4. Let A be an abelian category and X a localizing subcategory of A
with Y := X⊥. Then

(1) (X ,Y) is a complete Ext-orthogonal pair in A if and only if Y = X⊥0,1 if and
only if the section functor s :A/X →A is exact.

(2) (X ,Y) is a derived decomposition of A if and only if both Y = X⊥0,1 and the
derived functor Db(i) :Db(X )→Db(A), induced from the inclusion i :X→A,
is fully faithful.

Proof. (1) Since X is a localizing subcategory of A, it follows from [Geigle and
Lenzing 1991, Proposition 2.2] that, for each object M ∈ A, there is an exact
sequence 0→ X1→ M→ M→ X2→ 0 in A with X1, X2 ∈ X and M ∈ X⊥0,1.
Clearly, X ⊆ ⊥Y . By Lemma 2.3, (X ,Y) is a complete Ext-orthogonal pair in A if
and only if Y = X⊥0,1. It remains to show that Y = X⊥0,1 if and only if s is exact.

Let B := A/X and q1 : X⊥0,1 '
−→ B the restriction of the canonical functor

q :A→ B to X⊥0,1. It is known that s is always fully faithful and isomorphic to
the composition of the quasi-inverse of q1 with the inclusion X⊥0,1

⊆A (see, for
example, [Geigle and Lenzing 1991, Proposition 2.2]). If Y = X⊥0,1, then Y is an
abelian subcategory of A since X⊥0,1 is closed under extensions and kernels in A.
In this case, q1 is an equivalence of abelian categories, and thus s is exact.

Conversely, suppose that s is an exact functor. Since both q and s are exact,
they induce derived functors Db(q) :Db(A)→Db(B) and Db(s) :Db(B)→Db(A)
such that (Db(q),Db(s)) is an adjoint pair and Db(s) is fully faithful. Picking up
an object Y ∈ X⊥0,1, we then have Y ' s(Z) for some Z ∈ B since Im(s)= X⊥0,1.
For any X ∈ X and n ∈ N, there are

ExtnA(X, Y )' ExtnA(X, s(Z))= HomDb(A)(X, s(Z)[n])

' HomDb(B)(q(X), Z [n])= HomDb(B)(0, Z [n])= 0.

This implies both X⊥0,1
⊆ Y and X⊥0,1

= Y .

(2) The necessity of the conditions in (2) is a consequence of Definition 1.1,
Proposition 3.1 and (1). Now, we show the sufficiency of the conditions in (2).

Suppose that Db(i) is fully faithful and Y = X⊥0,1. By the proof of (1),
(Db(q),Db(s)) is an adjoint pair and Db(s) is fully faithful. Let X := Ker(Db(q)).
Then (X, Im(Db(s))) is a semiorthogonal decomposition of Db(A). Since q is
exact, X coincides with the full triangulated subcategory of Db(A) consisting of
complexes X• ∈ D(A) such that H n(X•) ∈ X for all n. Further, since X is an
abelian subcategory of A and Db(i) is fully faithful, we have X= Im(Db(i)). Recall
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that s is fully faithful and Im(s)= Y . Thus (X ,Y) is a derived decomposition of
A. �

Lemma 4.5. Suppose that A is an abelian category such that each object of A has
an injective envelope. Let X be a Serre subcategory of A and E := X⊥0

∩ I(A).
Then X⊥ (respectively, X⊥0,1) consists of all objects M which has a minimal
injective resolution 0→ M→ I0→ I1→ · · ·→ Ii → · · · with Ii ∈ E for all i ≥ 0
(respectively, i = 0, 1).

Proof. We first prove that X⊥0 is closed under injective envelope in A, that is, if
Z ∈ X⊥0, then the injective envelope E(Z) of Z belongs to X⊥0.

Let Z ∈ X⊥0 and assume contrarily that there is a nonzero morphism f : X→
E(Z) in A for some X ∈ X . Then Im( f ) 6= 0 and there is a monomorphism
g : Im( f )→ E(Z). Let h : Z→ E(Z) be an injective envelope of Z . Taking the
pull-back of (g, h) yields another two monomorphisms K → Z and K → Im( f )
in A. As E(Z) is the injective envelope of Z , we have K 6= 0. By assumption, X
is closed under subobjects and quotients. Hence, with X also Im( f ) and K lie in
X . It follows from Z ∈ X⊥0 that K = 0, a contradiction. This shows E(Z) ∈ X⊥0.
Hence X⊥0 is closed under injective envelope in A.

If Z ∈ X⊥0, then E(Z) ∈ E . Moreover, there are inclusions of categories:
E ⊆ X⊥ ⊆ X⊥0,1

⊆ A. Recall that X⊥ is closed under extensions, kernels of
epimorphisms and cokernels of monomorphisms in A, and that X⊥0,1 is closed
under extensions and kernels in A. Now, it is easy to verify Lemma 4.5. �

The following result furnishes a way to get derived decompositions from localiz-
ing subcategories.

Proposition 4.6. Let A be an abelian category such that each of its objects has an
injective envelope. If X is a localizing subcategory of A with Y := X⊥, then the
following are equivalent:

(1) (X ,Y) is a derived decomposition of A.

(2) Each morphism I 0
→ I 1 between injective objects in A with I 1

∈ Y can be
completed to an exact sequence I 0

→ I 1
→ I 2 such that I 2 is injective and

I 2
∈ Y .

(3) The image of each morphism from an injective object in A to an object in Y
belongs to Y .

Proof. Since X is a localizing subcategory of A, the proof of Lemma 4.4(1) shows
that the five-term exact sequence associated with an object M ∈A becomes

0−→ r(M) ε
−1
M−→ M ε0

M−→ `(M)−→ X M
−→ 0

with r(M), X M
∈ X and `(M) ∈ X⊥0,1.
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(1)⇒ (2) Since A has enough injectives and Db(i) : Db(X )→ Db(A) is fully
faithful, we see from Lemma 3.11(2) that X M

= 0 whenever M ∈ I(A). Let
f : I 0

→ I 1 be a morphism of injective objects in A with I 1
∈ Y . Then there

is an exact sequence 0 → r(I 0) → I 0
→ `(I 0) → 0 in A. We always have

HomA(r(I 0), I 1) = 0, due to r(I 0) ∈ X and I 1
∈ Y . Consequently, f is the

composition of the morphism ε0
I 0 : I 0

→`(I 0)with another morphism g :`(I 0)→ I 1.
This implies Coker( f ) ' Coker(g). Since Y is an abelian subcategory of A,
Coker(g) ∈ Y , and thus also Coker( f ) ∈ Y . Let I 2 be the injective envelope of
Coker( f ). Then I 2

∈ Y by Lemma 4.5. Now, we extend f to an exact sequence
I 0
→ I 1

→ I 2.

(2)⇒ (3) Thanks to Lemma 4.5, the assumption (2) implies Y =X⊥0,1. Since Y is
closed under extensions, kernels of epimorphisms and cokernels of monomorphisms
in A and since X⊥0,1 is closed under kernels in A by [Geigle and Lenzing 1991,
Proposition 1.1], Y is an abelian subcategory of A. Let h : I 0

→ Y be morphism in
A with Y ∈ Y and I 0 an injective object. Further, let I 1 be the injective envelope
of Y with a monomorphism s : Y → I 1. Then I 1

∈ Y , according to Lemma 4.5.
Moreover, by (2), the composition h with s can be completed to an exact sequence
I 0 hs
−→ I 1 t

−→ I 2 in A such that I 2 is injective and I 2
∈Y . Thus Im(hs)=Ker(t)∈Y .

Since Im(h)' Im(hs), Im(h) ∈ Y , and therefore (3) follows.

(3)⇒ (1) By Lemma 4.5, Y = X⊥0,1. Thus, by Lemma 4.4(2), to show (1), it
suffices to prove that Db(i) : Db(X )→ Db(A) is fully faithful.

In fact, given an injective object I of A, since `(I ) ∈ Y , (3) implies that the
image of ε0

I : I → `(I ) belongs to Y . Further, since ε0
I : I → `(I ) is the unit

adjunction of I , Im(ε0
I )= `(I ). This shows X I

= 0. Now, by Lemma 3.11, Db(i)
is fully faithful since A has enough injectives. Thus (1) holds. �

4.3. Nonsingular rings. In this section we will apply Proposition 4.6 to construct
derived decomposition from left nonsingular rings. The main result of this section
is Corollary 1.5.

First, we recall some notions on left nonsingular rings (see [Goodearl 1976,
Chapter 1]).

Let R be a ring and M be an R-module with a submodule N . Recall that M is
an essential extension of N (or N is an essential submodule of M) if every nonzero
submodule of M has nonzero intersection with N . Recall that the injective envelope
of N is just an essential extension M of N with M an injective module. As before,
M is denoted by E(N ). The set of all essential submodules of R R is denoted by
S(R). A class U of R-modules is said to be closed under essential extensions in
R-Mod provided that M ∈ U whenever M is an essential extension of a module
N ∈ U .
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For an R-module M , we define Z(M) := {x ∈ M | I x = 0 for some I ∈ S(R)}.
This is a submodule of M and called the singular submodule of M . The module M
is called a singular module if Z(M)= M ; and a nonsingular module if Z(M)= 0.
The ring R is said to be left nonsingular if R R is a nonsingular module. Examples
of left nonsingular rings include left semihereditary rings, direct products of inte-
gral domains, semiprime left Goldie rings and commutative semiprime rings (see
[Goodearl 1976] for more examples).

To show Corollary 1.5, we need the following basic properties of singular and
nonsingular modules (see [Goodearl 1976, Propositions 1.20 and 1.22] for proofs).

Lemma 4.7. Let R be a ring, X the full subcategory of singular modules in R-Mod,
and M an R-module.

(1) M ∈ X if and only if M is isomorphic to the quotient X/Y of an essential
extension Y ⊆ X.

(2) M ∈ X⊥0 if and only if M is nonsingular.

(3) X is closed under submodules, quotients and direct sums in R-Mod; and
X⊥0 is closed under submodules, direct products, extensions and essential
extensions in R-Mod.

In general, the full subcategory X of singular R-modules may not be closed
under extensions in R-Mod. Nevertheless, the next lemma, taken from [Goodearl
1976, Propositions 1.23 and 2.12], provides a positive situation.

Lemma 4.8. Let R be a left nonsingular ring and X be the full subcategory of
singular R-modules. Then

(1) X is closed under extensions and essential extensions in R-Mod.

(2) X = ⊥0(X⊥0)= ⊥0 E(R).

(3) Let M be an R-module. Then M/Z(M) ∈ X⊥0. Moreover, M is nonsingular
if and only if M can be embedded in a direct product of copies of E(R).

Remark 4.9. If R is a left nonsingular ring, then the subcategory X of singular
R-modules is a localizing subcategory of R-Mod by Lemmas 4.7 and 4.8. Hence
(X ,X⊥0) is a hereditary torsion pair in R-Mod (see [Beligiannis and Reiten 2007,
§1, p. 13] for definition). Moreover, E(R) is nonsingular, while E(R)/R is singular.

Proof of Corollary 1.5. Let R be a left nonsingular ring. We show Y = X⊥0
∩

I(R-Mod)= X⊥ = X⊥0,1.
Since E(R R) is injective and nonsingular, Y ⊆ X⊥0

∩I(R-Mod). The converse
inclusion X⊥0

∩ I(R-Mod) ⊆ Y follows from Lemmas 4.7(2) and 4.8(3). Thus
Y = X⊥0

∩I(R-Mod).
Clearly, Y ⊆ X⊥ ⊆ X⊥0,1. So, to show the other equalities, it is enough to show

X⊥0,1
⊆ Y . To this purpose, we first prove a general result:
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(∗∗) If 0→ M f
−→ I g

−→ J is an exact sequence of R-module such that I is
injective and J is nonsingular, then M is injective.

In fact, since f is injective and R I is injective, there is another injective R-module
K such that Coker( f )' (E(M)/M)⊕K . Moreover, since J is nonsingular, Im(g)
is also nonsingular by Lemma 4.7(3). It follows from Coker( f ) = Im(g) that
E(M)/M is nonsingular. However, E(M)/M is singular by Lemma 4.7(1). This
implies that M = E(M) is injective.

By Lemma 4.5, the category X⊥0,1 consists of all R-modules Y which has
a minimal injective presentation 0→ Y → I0 → I1 with I0, I1 ∈ Y . Since I0

is injective and I1 is nonsingular, it follows from (∗∗) that Y is injective. Thus
Y ∈ add(I0)⊆ Y . This shows X⊥0,1

⊆ Y .
As a consequence of (∗∗), there is an isomorphism I ' M⊕ Im(g). Thus Im(g)

is injective. This implies Im(g) ∈ add(J ). Now, if J ∈ Y , then Im(g) ∈ Y . Hence
Corollary 1.5 follows from Proposition 4.6(3). �

4.4. Commutative noetherian rings. In this section we will apply Proposition 4.6
to construct derived decomposition from commutative noetherian rings. Thus we
prove Corollary 1.4 in the introduction.

Let R be a commutative noetherian ring and Spec(R) be the prime spectrum of
R. For a multiplicative subset 6 of R, we denote by 6−1 R the localization of R
at 6. For p ∈ Spec(R), let Rp be the localization of R at the set R \ p. We always
identify Spec(6−1 R) with the subset of all prime ideals p of R satisfying p∩6=∅.
We also regard (6−1 R)-Mod as a full subcategory of R-Mod in the sense that an
R-module M belongs to (6−1 R)-Mod if and only if M ' (6−1 R)⊗R M as R-
modules. Let Ass(M) be the set of prime ideals p of R such that Rp is isomorphic
to a submodule of M . Thus Ass(M) = Ass(E(M)), where E(M) is an injective
envelope of M . The support of M , denoted by Supp(M), is by definition the set of
prime ideals p of R satisfying TorR

i (Rp/pRp, M) 6= 0 for some i ∈ N (see [Foxby
1979]). In general, Ass(M) ⊆ Supp(M) ⊆ {p ∈ Spec(R) | Mp 6= 0}. The second
inclusion is an equality if the module M is finitely generated. Note that Supp(M)
is the union of the subsets Ass(I ) of Spec(R), where I runs over all those injective
R-modules that appear in a minimal injective resolution of M (see [Foxby 1979,
Remark 2.9] or [Krause 2008, Lemma 3.3]). In particular, if M is injective, then
Ass(M)= Supp(M).

The following hold for a commutative noetherian ring R:

(a) Each injective R-module is a direct sum of indecomposable injective R-
modules.

(b) {E(R/p) | p ∈ Spec(R)} is a complete set of nonisomorphic indecomposable
injective R-modules.
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(c) HomR(E(R/p), E(R/q) 6= 0 if and only if p⊆ q in Spec(R) (see [Enochs and
Jenda 2000, Theorems 3.3.7 and 3.3.8]).

Let S be a full subcategory of R-Mod and let 8 be a subset of Spec(R). We
define

Supp(S) :=
⋃
M∈S

Supp(M) and Supp−1(8) := {M ∈ R-Mod | Supp(M)⊆8}.

Gabriel’s [1962, p. 425] classification of localizing subcategories conveys that the
map Supp induces a bijection between the set of localizing subcategories of R-Mod
and the set of specialization closed subsets of Spec(R). The inverse of Supp is
just given by Supp−1. This was extended in [Krause 2008, Theorem 3.1] to a
bijection (with the same maps) between the set of abelian full subcategories of
R-Mod closed under extensions and arbitrary direct sums, and the set of coherent
subsets of Spec(R).

A subset 8 of Spec(R) is said to be specialization closed provided that if
p, q ∈ Spec(R) and p⊆ q, then p ∈8 implies q ∈8; coherent provided that each
homomorphism I 0

→ I 1 between injective R-modules with Ass(I 0)∪Ass(I 1)⊆8

can be completed to an exact sequence I 0
→ I 1

→ I 2 such that I 2 is injective
and Ass(I 2) ⊆ 8 (see [Krause 2008, §3]). Examples of coherent subsets are
specialization closed subsets and Spec(6−1 R). For further information on coherent
subsets, we refer the reader to [Krause 2008, §4].

An application of Proposition 4.6 is the following

Corollary 4.10. Let R be a commutative noetherian ring, 8 be a specialization
closed subset of Spec(R), and

8c
:= Spec(R) \8.

Then the pair (Supp−1(8),Supp−1(8c)) is a derived decomposition of R-Mod if
and only if 8c is coherent.

Proof. Let X := Supp−1(8) and Ass−1(8c) := {M ∈ R-Mod |Ass(M)⊆8c
}. We

first show that X⊥0
= Ass−1(8c).

Let U ∈ X and V ∈ Ass−1(8c). Then Supp(E(U )) ⊆ Supp(U ) ⊆ 8 and
Ass(E(V ))=Ass(V )⊆8c. If HomR(E(U ), E(V )) 6=0, then there is a nonzero ho-
momorphism from a direct summand E(R/p) of E(U ) to a direct summand E(R/q)
of E(V ), where p∈8 and q∈8c. In this case, we have p⊆ q. This is contradictory
to the assumption that 8 is specialization closed. Thus HomR(E(U ), E(V )) =
0. This implies HomR(U, V ) = 0 and shows Ass−1(8c) ⊆ X⊥0. To verify
X⊥0
⊆ Ass−1(8c), we take W ∈ X⊥0 and a ∈ Ass(W ). Then R/a is isomor-

phic to a nonzero submodule of W . If a ∈ 8 and 8 is specialization closed,
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then Supp(R/a) = {b ∈ Spec(R) | a ⊆ b} ⊆ 8. This implies R/a ∈ X and
HomR(R/a,W )= 0, a contradiction. Thus a ∈8c.

Let Y := X⊥ and E := X⊥0
∩I(R-Mod). Then E = Ass−1(8c)∩I(R-Mod)=

Y ∩ I(R-Mod). By Lemma 4.5, Y consists of all R-modules M which has a
minimal injective resolution 0→ M→ I0→ I1→ I2→ · · · such that Ii ∈ E for
all i ≥ 0. Since Supp(M)=

⋃
i≥0 Ass(Ii ), Y = Supp−1(8c). Observe that, for any

9 ⊆ Spec(R), Supp−1(9) is always closed under direct sums in R-Mod because
Supp

(⊕
j∈J M j

)
=
⋃

j∈J Supp(M j ) for any family {M j } j∈J of R-modules with J
an index set. In particular, Y is closed under direct sums in R-Mod.

If (X ,Y) is a derived decomposition of R-Mod, then Y is an abelian full subcat-
egory of R-Mod and closed under both extensions and direct sums, and therefore
8c is coherent.

Conversely, suppose that 8c is coherent. Let f : I 0
→ I 1 be a homomorphism

between injective R-modules with I 1
∈Y . By Proposition 4.6(2), we need to extend

f to an exact sequence I 0
→ I 1

→ I 2 in R-Mod with I 2
∈E . This can be done if I 0

∈

E since 8c is coherent. For the general case, we decompose I 0 into a direct sum of
indecomposable injective modules. Recall that {E(R/p) |p∈Spec(R)} is a complete
set of isomorphism classes of indecomposable injective R-modules and that

Ass(E(R/p))= Supp(E(R/p))= {p}.

Consequently, E(R/p) belongs to either X or Y . This yields a decomposition
I 0
= X ⊕ Y with X ∈ X and Y ∈ Y . Since HomR(X, I 1) = 0, f = (0, g), where

g : Y → I 1 is the restriction of f to Y . Clearly, g is a homomorphism between
modules in E . Now, we first extend g and then f to an exact sequence I 0

→ I 1
→ I 2

in R-Mod with I 2
∈ E . Thus (X ,Y) is a derived decomposition of R-Mod. �

Proof of Corollary 1.4. For (1), the statement (i) is Corollary 4.10. For (ii), if
the Krull dimension of R is at most 1, then every subset of Spec(R) is coherent
by [Krause 2008, Theorem 1.2]. Thus (ii) follows from (i). For (2), let S be the
localization of R at 6 and recall that Spec(S) is identified with the subset of all
prime ideals p of R satisfying p∩6 =∅. Then 8c

= Spec(S) is coherent and (2)
follows from (i). Note that (2) follows also from Corollary 4.3. �

In Corollary 4.10, when 8c is coherent, Y := Supp−1(8c) is an abelian full
subcategory of R-Mod closed under direct sums, and the inclusion j : Y→ R-Mod
has a left adjoint ` : R-Mod→ Y . Let S = EndR(`(R)) and let λ : R→ S be the
ring homomorphism induced from `. By [Geigle and Lenzing 1991, Proposition
3.8], λ is a ring epimorphism and induces an equivalence of abelian categories:
S-Mod

'
→ Y . Moreover, S is a flat R-module since ` is exact. Thus λ is a flat ring

epimorphism (see also [Angeleri Hügel et al. 2020]). Consequently, S is also a
commutative noetherian ring. So we can apply Corollary 4.10 (for example, via
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localizations) to S and obtain a derived decomposition of S-Mod. By iterating
this procedure, we can stratify R-Mod as a sequence of derived decompositions.
When the Krull dimension of R is at most 1, a derived stratification of R-Mod can
be constructed explicitly. Note that an abelian category A is said to be derived
indecomposable if it does not have any nontrivial derived decompositions, that is,
only (A, 0) and (0,A) are the derived decompositions of A.

Corollary 4.11. Suppose that R is a commutative noetherian ring of Krull dimen-
sion at most 1. Let Max(R) be the set of maximal ideals of R and let Min(R) be the
set of prime ideals of R which are not maximal. Then

(1) (Supp−1(Max(R)),Supp−1(Min(R))) is a derived decomposition of R-Mod.

(2) There are equivalences of abelian categories:

Supp−1(Max(R)) '−→
∏

m∈Max(R)

Supp−1({m}),

Supp−1(Min(R)) '−→
∏

p∈Min(R)

Rp-Mod,

where
∏

denotes the direct product of abelian categories.

(3) Both Supp−1({m}) and Rp-Mod are derived indecomposable for any m ∈

Max(R) and p ∈Min(R).

Proof. (1) Clearly, Max(R) is a specialization closed subset of Spec(R). Since the
Krull dimension of R is at most 1, the statement (1) follows from Corollary 1.4.

(2) To show the equivalences, we first establish the following

Lemma 4.12. Let 8 be a subset of Spec(R) with dim(8) ≤ 0. Then there is an
equivalence of abelian categories:

∏
p∈8 Supp−1({p})

'
−→ Supp−1(8).

Proof. In fact, given an R-module M with a minimal injective resolution 0→M→
I0→ I1→ I2→ · · · , we always have Supp(M)=

⋃
i≥0 Ass(Ii )=

⋃
i≥0 Supp(Ii ).

Consequently, M ∈ Supp−1(8) if and only if Ii ∈ Supp−1(8) for all i ≥ 0. Recall
that, for each a ∈ Spec(R), if a * b ∈ Spec(R), then HomR(E(R/a), E(R/b) =
0. Moreover, Ra-Mod is regarded as an abelian full subcategory of R-Mod and
E(R/a) ∈ Ra-Mod. So, the condition dim(8)≤ 0 (that is, p⊆ q implies p= q for
p, q ∈8) implies

(1) M ∈ Supp−1(8) if and only if M '
⊕

p∈8 Mp with Mp ∈ Supp−1({p}), where
Mp stands for the localization of M at p; and

(2) if p, q ∈ 8 and p 6= q, then HomR(X, Y ) = 0 for all X ∈ Supp−1({p}) and
Y ∈ Supp−1({q}).

By (1) and (2), the functor
⊕
:
∏

p∈8 Supp−1({p})→ Supp−1(8), given by
taking direct sums in R-Mod, is an equivalence of abelian categories. �
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Now, since the Krull dimension of R is at most 1, we have dim(Max(R)) ≤ 0
and dim(Min(R))≤ 0. Moreover, if p is a minimal prime ideal of R, then it follows
from Supp(M) =

⋃
i≥0 Ass(Ii ) that Supp−1({p}) = Rp-Mod. Note that Min(R)

consists of all minimal prime ideals of R which are not maximal. Now, the existence
of equivalences in Corollary 4.11 follows from Lemma 4.12.

(3) If (X ,Y) is an Ext-orthogonal pair of an abelian category A with arbitrary direct
sums, then X = ⊥Y and X is closed under both extensions and arbitrary direct sums
(see the dual of [Mac Lane 1998, Theorem 1, p. 116]). It follows from [Krause
2008, Theorem 3.1] that, for any a ∈ Spec(R), the abelian category Supp−1({a})

does not contain nontrivial abelian full subcategory which is closed under extensions
and arbitrary direct sums. This implies that the abelian Supp−1({a}) is derived
indecomposable. Thus (3) holds. �
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